Poly(ethylene glycol) enhances cell motility on protein-based poly(ethylene glycol)-polycarbonate substrates: a mechanism for cell-guided ligand remodeling.
نویسندگان
چکیده
The regulation of cell motility on ligand-adsorbed poly(ethylene glycol) (PEG)-based polymeric biomaterials is governed by variables that are not well characterized. In this report, we examined keratinocyte migratory responsiveness to PEG-variant tyrosine-derived polycarbonates adsorbed with equivalent levels of the cell adhesion ligand, fibronectin. The equivalently adsorbed ligand adopted differential distributions, confirmed via atomic force microscopy, and the total number of exposed cell-binding domains (CBD), quantified through immunosorbent fluorometry, varied as a function of PEG concentration. Specifically, the CBD exposure was maximized at 4 mol % PEG and diminished at 8 mol % PEG, suggesting, based on our previous work (Tziampazis et al., Biomaterials 2000;21:511-520), that activation of cell adhesion and motility could be potentially promoted through increased CBD exposure at intermediate levels of PEG. This was confirmed through cell migration studies wherein cell speed values increased from 11 to 22 microm/h as the PEG concentration was increased from 0 to 4 mol %. Unexpectedly, however, high cell motility rates were sustained at 8 mol % PEG despite diminished levels of initial CBD exposure beyond 4 mol % PEG, suggesting that factors other than the initial CBD exposure may additionally have a role in activating cell migration at higher levels of PEG. Through studies of direct ligand mobility, cell-ligand-polymer interactions via atomic force microscopy, and CBD variation and integrin receptor roles in ligand remodeling, we offer evidence that cell motility is enhanced by a new mechanism for the regimen of higher PEG concentration: upon cell attachment and spreading, the ligand exhibits greater "slippage" at the polymer interface, and undergoes cell-engendered remodeling, which further activates cell motility, likely through enhanced exposure of hitherto encrypted sites for cell binding and signaling.
منابع مشابه
Study of Surface Tension of Binary Mixtures of Poly (Ethylene Glycol) in Water and Poly (Propylene Glycol) in Ethanol and its Modeling Using Neural Network
متن کامل
Protein-resistant polymer coatings based on surface-adsorbed poly(aminoethyl methacrylate)/poly(ethylene glycol) copolymers.
We report on the protein-resistant properties of glass substrates coated with novel copolymers of 2-aminoethyl methacrylate hydrochloride and poly(ethylene glycol) methyl ether methacrylate (AEM-PEG). In comparison to currently available protein-blocking polymer systems, such as poly-l-lysine-poly(ethylene glycol), silane-based poly(ethylene glycol), and poly(ethylene glycol) brushes prepared b...
متن کاملEffect of Ethylene Oxide Functional Groups in PEBA-CNT Membranes on CO2/CH4 Mixed Gas Separation
Poly (ether-block-amide) /poly (ethylene glycol)/ carbon nanotubes mixed matrix membranes have been successfully fabricated using solvent evaporation method to determine the effect of ethylene oxide groups on the performance of produced membranes. The effects of CNTs (2-8 wt%) and PEG (up to 50 wt%)were investigated in both single and mixed gas test setup in different temperature and pressure. ...
متن کاملEffective Parameters on the Partition Coefficient of Guanidine Hydrochloride in the Poly (Ethylene Glycol) +Phosphate +Water System at 298.15 K
متن کامل
Docetaxel-Loaded Mixed Micelles and Polymersomes Composed of Poly (caprolactone)-Poly (ethylene glycol) (PEG-PCL) and Poly (lactic acid)-Poly (ethylene glycol) (PEG-PLA): Preparation and In-Vitro Characterization
Microwave irradiation was used to synthesize PEG-PCL and PEG-PLA copolymers that are composed of biodegradable polymers including PEG, PLA, and PCL. These copolymers were used for loading docetaxel in nanoparticles. Single emulsion-solvent evaporation technique was applied for preparing the PEG-PLA and PEG-PCL mixed nanoparticles (micelles and polymersomes) with different proportions, including...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of biomedical materials research. Part A
دوره 69 1 شماره
صفحات -
تاریخ انتشار 2004